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Abstract—The subject of this paper is the efficient and accurate determination of design sensitivity
coefficients (DSCs) in an elastic solid with zones and corners. Direct differentiation of the relevant
derivative boundary element method (DBEM) formulation of the problem is carried out here.
Corners and zones in a body are treated carcfully with conforming elements. A numerical implemen-
tation of the method is carried out with isoparametric quadratic boundary elements. The power of
this approach is demonstrated through several numerical examples. It is shown that the DSCs of
the various mechanical quantities of interest are obtained accurately and efficiently. In onc example,
even the DSC of the stress at a corner, with respect to the corner angle, is obtained very accurately
by this method.

. INTRODUCTION

Shapce optimat design is an important topic in the structural design research area. Typically,
the optimal shape of a 2-D or 3-D structural component is determined to minimize an
objective function, subject to some constraints involving mechanical quantitics such as
displacements, tractions or stresscs,

In almost all shape optimization processes, design sensitivity coeflicients (DSCs), which
are the rates of mechanical quantities with respect to a design variable, are essential for the
determination of the optimum shape of the bodies. The design variable being considered
here is a shape parameter that controls the shape of part or whole of the boundary of a
body. The DSCs are then used as a guide to the best directions in nonlinear programming
algorithms which typically iterate on the shape of the object along these directions until an
optimal shape is obtained. Accurate and efficient determination of DSCs leads to a smaller
number of iterations, thus leading to efficient design.

The subject of this paper is the accurate and eflicient determination of design sensitivity
cocflicicnt (DSCs) for 2-D lincar clasticity problems by the boundary element method
(BEM). The bodies can have corners on their bounduries and can be divided into multiple
zones.

The approach being used here is the direct analytical differentiation (DDA) of the
governing boundary element method formulation of the problem. The exact differentiation
climinates errors that might occur from finite difference methods and leads to closed form
integral equations for the desired sensitivitics. These equations are then solved by numerical
discretization. This approach is very accurate and efficient.

There are some papers in the literature that determine DSCs by DDA of the BEM
formulation of a problem. Baronc and Yang (1988) have used this approach for 2-D
lincar elasticity and have solved a simplc example of an ellipse without corners. Rice and
Mukherjee (1990) have solved DSCs for axisymmetric elasticity while Kane and Saigal
(1988). Zhang and Mukherjee (1990), Saigal er al. (1989), Aithal er al. (1990) have solved
planar, axisymmetric and some 3-D problems, respsectively. In Kane and Saigal (1988),
Saigal et al. (1989) and Aithal et al. (1990), the authors first discretize the BEM equations
and then differentiate them analytically with respect to shape variables. while in Barone
and Yang (1988). Rice and Mukherjee (1990) and Zhang and Mukherjee (1989). the
authors follow the opposite approach. It seems more appealing. intuitively, to start with
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differentiation of the relevant BEM equations and follow this by discretization. The two
approaches do, as expected, eventually lead to the same equations.

Two difficult problems in this area of research are the accurate determination of
sensitivities of boundary stresses and the determination of displacements, tractions, stresses
and their sensitivities at corners on the boundary of a body. The finite element method
(FEM) has problems with the determination of accurate boundary stresses while the
approach of Barone and Yang (1988) requires the integration of strongly singular kernels
in order to obtain these quantities. The problem of DSCs for stresses, at a point on a corner
of the boundary of a body. has not been solved in an elegant manner before this work.

Ghosh er al. (1986, 1987). in two recent papers, have presented a BEM formulation
in which the tractions and displacement derivatives are primary boundary variables. This
formulation only has logarithmically singular kernels for 2-D problems. The boundary
stresses can be obtained from the boundary values of tractions and displacement derivatives
by purely algebraic calculations. While the original work (Ghosh et al., 1986) used non-
conforming elements at corners. the present work uses conforming elements, so that a
source point can be placed directly at a corner.

The present work, which is based on DDA of the derivative BEM formulation (Ghosh
et al.. 1986), makes two important contributions to the literature in this field. The first is
the elegant and accurate determination of stress sensitivities at a regular point on the
boundary of a body. The BEM formulation (Ghosh et ¢l., 1986) is analytically differentiated
with respect to a shape parameter to yield an intcgral equation for the sensitivities of
tractions and tangential derivatives of displucements on the boundary of a body. The new
differentiated kernels are completely regular for 2-D problems! Then the boundary stress
sensitivities are obtained directly as lincar combinations of the sensitivitics of tractions and
tangential derivatives of displacements. The accuracy of stress sensitivities at a boundary
point, therefore, is of the same order as that of the sensitivitics of tractions and displacement
derivatives.

The second important contribution is in the trcatment of corners and zones. Con-
forming clements are used at corners in the present work. A source point is placed directly
at a corner and the number of field quantitics (tractions and displacement derivatives) is
doubled at a corner since the components of these quantities are not necessarily continuous
across it. Therefore, BEM equations cannot give enough information for solving the
mechanical quantities. Extra equations at a corner come from the stress relations. In some
special cases (for instance, a right angled corner), stress components are continuous at
corners. This is not true in general. Stress discontinuities can occur at corners if the angle
is not 90 degrees, even though the stress components are bounded there. These two different
situations are carcfully treated in this paper.

The above ideas have been implemented in a computer program for the determination
of DSCs for planar elasticity problems. Numerical results are presented in this paper for
DSCs for planar bodies without and with corners. A very interesting example is the
determination of the sensitivity of stresses, at the tip of a wedge, with respect to the wedge
angle. The numerical results reported here are generally very accurate.

2. A DBEM FORMULATION FOR PLANAR ELASTICITY

Ghosh et al. have recently proposed a derivative boundary element method (DBEM)
formulation for lincar clasticity in which the tractions and tangential derivatives of dis-
placements (Ghosh et al., 1986, for 2-D problems) or tractions and displacement gradients
(Ghosh and Mukherjee, 1987, for 3-D problems) are the primary variables on the boundary
of a body. An analogous formulation has also been presented by Okada er al. (1988).

The BEM equations for two-dimensional lincar clasticity for a simply connected region
B can be written as (Ghosh ¢f «l., 1986) :

J:B[U.-,(P,Q)r.(Q)— W, (P,Q)A(Q)]ds(Q) =0 Q)

where U, is available in many references (c.g. Mukherjee, 1982) and. for plane strain
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i
W, = an(1— [’(l —VWo,+eur,ry+(1-2v)e, Inr].

In this equation for W', . the source and field points are P and @ (with capital letters denoting
points on the boundary éB and lower case letters denoting points inside B), r is the
Euclidean distance between P and Q and y is the angle between the vector r(P, Q) and a
reference direction. Also, t, and A, are the components of the traction and tangential
derivative of the displacement (Cu,/ds = A,), respectively, with s the curvilinear coordinate
measured along the boundary ¢ 8 of the planar body. Finally. &, = &,, = 0,6, = —é€3, = I,
vis Poisson’s ratio and J,, is the Kronecker delta. A comma following r denotes a derivative
with respect to a field point coordinate. It is very important to note that W, has only a
logarithmic singularity (same as U,)) as r goes to zero. A constraint equation

J. A ds = u,(2)—u,(1)
28,

(where ¢ B, is a suitable part of ¢B with ,(1) and «,(2) the values of y, at the beginning and
end of ¢B,) must be included for certain problems.

As can be seen from eqn (1), the traction and tangential displacement derivative vectors
are the primary unknowns on 08 in this formulation. It has been shown that the stress
components at a regular point on ¢B, for plane strain, can be written in terms of the
components of r and A as (Sladek and Sladek, 1986 ; Cruse and Vanburen, 1971):

0',-, = A,,ka + BukAk (2)
where

Ay = (ot Ing + (mt, +n,t )t

Buk = ('2’,’1“

with ¢, = v/(1 —v), ¢2 = 2G/(1 —v) and G the shear modulus of the material. Also, n; and
¢, are the components of the unit (outward) normal and (counter-clockwise) tangential
vectors at a point on d8. Thus, if T and A arc primitive variables on 48 in a BEM
formulation, then these quantities, as well as g,,, can be obtained on @8 with very high
accuracy.

The corresponding DBEM equation for the sensitivities are obtained by differentiating
egn (1) with respect to a shape design variable b (see Zhang and Mukherjee, 1989) :

L (U, (b, P.Q)3,(b.Q) — W, (b, P,Q)A,(b. Q)] dsb. Q)
- f 10, (0.P.Q)r,(b.Q)~ W, (b. P.Q)A(b.0)] ds(b. Q)

+J18 (U,(b,P.Q)r,(b,Q)— W, (b, P.Q)A(b,Q)]d5(b,Q) =0 (3)

where a superscript * denotes a derivative with respect to a typical component of b. It has
been shown (Barone and Yang, 1988) that

U, (b, P.Q) = U, (b, P,Q)[%(Q) — %.(P)] )

where, by virtue of the fact that
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Q) — % (P) ~ O(r).

5',, is completely regular! A similar argument is used to show that W,, is also regular. Finally
(Barone and Yang, 1988).

di(b, Q) = [¥x(Q) —nm %, (Q)] ds(b. Q). &)

A more convenient formula for d¥ is given in Appendix A. A very interesting feature of
eqn (3) is that its first line is identical to eqn (1) with the sensitivities replacing the tractions
and displacement derivatives. Analogous to the usual BEM problem, half of the sensitivities
on ¢B must be prescribed and the rest can then be determined from eqn (3). Thus, the
sensitivity problem has the same coeflicient matrices as the original BEM problem with a
known right hand side (since r and & on éB are known at this stage}. This known right hand
side involves the evaluation of regular integrals which is very easy to perform accurately.

The equation for the sensitivity of stress at a regular point on ¢8 is obtained by
differentiating eqn (2) with respect to the design variable b:

G",, = A,;kf;‘+B,lkA§+A,-}-*f*+B,~1kAk. (6)

The above equataon expresses 4, as a linear combmatmn of r,. A, and their sensitivitics.
Hence, one expects c,, to be obtained as accurately as T, and A

X CORNERS AND ZONES

3.1 Corners

The real solid body may include some corners across cach of which there is a jump in
the unit vectors nand t which are normal and tangential to the boundary ¢ 8. Conscquently,
discontinuitics in both the tractions and tangential derivatives of displacements will occur
at a corner. Therefore, eight quantities are of interest at a corner in the 2-D clasticity
problem, only four of which arc prescribed from the boundary conditions. If t source point
P is placed exactly at a corner (conforming boundary clements) one obtains two BEM
cquations at P, but two more independent equations are still necessary. Fortunately, this
information can be obtained by considering the behavior of stress components at a corner
point.

3.L.1. General corners : stress components are discontinuous at a corner. A corner point
on the boundary of the body can be viewed locally as the tip of a wedge, as indicated in
Fig. 1. The wedge problem is a classical clasticity problem and has been investigated by many
researchers for many years (Timoshenko and Goodier, 1970). The situation considered here
is that the stress components are bounded at the tip as well as throughout the whole wedge,
and that only distributed loads are applied on the wedge faces. Also, the assumption of

Fig. 1. The elasticity problem in a wedge.
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uniform local boundary loads on the two faces of the wedge is made because each corner
region is assumed to be small enough compared to the whole body.

A general stress function in polar coordinates, for planar elasticity problems, is avail-
able {Timoshenko and Goodier, 1970). The function chosen here is of the form

o(r,8) = r*[A+ B8+ Ccos (26) + Dsin (26)] @)
because this function has four unknown constants, gives bounded stresses in the wedge and

contains the only terms from the general solution that give constant tractions on the wedge
faces. The corresponding stress components in polar coordinates are:

¢ o1l
Gy =77, Ow= -—5(; ;;5) ®
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Clearly. four coefficients 4, B, C and D in the stress function have to be determined to
satisfy the four boundary tractions which represent the local traction information around
the corner.

Substituting the boundary conditions (Fig. )

atf@=p, oe=1;, Gp= -1,
at 0= A, Oy =71,, Og= _t; (9)
into eqn (7). onc can obtain A, B, C and D easily (sec Appendix B).

After lengthy algebra and usc of the symbolic computer program MACSYMA, a
rather simple solution is obtained for the stress jumps at the tip of the wedge. Writing, for
simplicity, the stress jumps for the special case f = 0, one can show that

Agy, = [x+sinacosa] f(t, )
Aoy, = [a—sinzcosal f{1,%)
Aoy, =sintaf(1,2) {10

where

(tf -t )+ (t}r +1 )tanax
a—tanz ’

St.a) =

Here .y, 0,; and o,; are components in the global Cartesian axes.

By observing eqn (10), it is obvious that the stress components are not, in general,
continuous at the tip, even though they are bounded there. This is because there exists the
term Br’0 in the stress function and the coefficient B does not, in general, vanish. The
special cases when the stress components have no jump at the tip will be discussed later in
this paper.

It is casicst to understand the singular behavior of the displacement derivatives by
considering the special case with only B # 0 in eqn (7). Now, once again, a general
orientation of the corner (f # 0) is being considered. For this case, from eqn (8), the stress
components in polar coordinates have the following form:

g, = ZBO. Og = 230, G,g = - B.
Substituting the above stresses into the constitutive relations for plane strain elasticity,

one can obtain the Cartesian displacement components in terms of polar coordinate vari-
ables as the following:
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u, =2prdcosf+4grinrsin—krsin6+ £

u, =2prlsinf—4grinrcos8+krcos+F (y

where p = B(1 —2v),2G. ¢ = 2B(1 —v) and E. F and k are integration constants. Here, £
and F represent rigid body translations while & represents the rigid body rotation.

Evaluating eqn (11) along the boundary of the wedge and taking derivatives with
respect to the curvilinear coordinate s, one can easily get the tangential displacement
derivatives A, and A as:

at0=p4, A, =2pfcosB+4qlnrsinf+4qsinf—krsinf
A, =2pfsinf—4glnrcos f—4qgcos f+krcosf
atf@ =2, A, = —2pacosa—4qlarsinz—4dgsina+krsina
A: = —2pasina+4qlinrcos x+4qcosa—krcosa (12)

Note that A, and A have In r singularities at the tip of the wedge. This is directly induced
by the Br°¢ term. Therefore, the Br’0 term in the stress function causes not only the
discontinuity in stresses but also the singularity in displacement derivatives.

Further analysis of eqn (2) reveals that the boundary stress components only involve
the tangential component of A. Since, by assumption, ¢ is bounded at a corner, so are A,
on cither side of it. It can be shown from eqn (12) that A, and A}, associated with rigid
body rotation, become singular in this case.

A BEM implementation of the general corner is described next. Suppose, for clarity,
that the tractions are prescribed on either side of a gencral corner. Mixed boundary
conditions can be taken care of by a modification of the following.

The first step is to obtain a general solution for A, and A, on either side of a corner,
in terms of the prescribed tractions and the (unknown) rigid body rotation k. For this,
Appendix B would be useful. The result is the expressions (12), corresponding to B
(assuming B # 0), as well as other bounded terms from 4, C and D of eqn (7). If, in a
given example, B happens to vanish, then one has a special corner, with continuous stress
and bounded A. This is discussed in the next section. Otherwise, the existence of the In r
singularity in A, and A,, on either side of a general corner, requires special attention in a
BEM implementation. Now a special pair of (small, straight) segments 0B, (Fig. 2) are
placed next to a corner point and a source point P is placed at the corner O as usual.
Solution (12), which originates from the Br°0 term in eqn (7). is valid locally if the segments
arc small. The other terms in ¢(r, 0) from egn (7) give bounded A and must also be included
in general.

The DBEM eqn (1) is separated into two parts, one over 0B, and the other over the
remainder CB—08B,:

B -dB
s

3B,

Fig. 2. Special segments on the boundary.
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L-a, [U,(P.Q)(Q) - W,(P,2)A(Q)]ds
+J:a [Uy(P, Q) (Q)— W, (P,Q)A(Q)]ds =0. (13)

The expressions in eqn (12) (together with other terms from A. C and D) are integrated
exactly, even for the worst case when the source point is at the corner itself and one term
in W, A, has the form (In r)°. The local rotation k, at the corner. is unknown in eqn (12),
but can be solved once the global BEM equations, over the entire ¢B. are assembled. In
effect, the quantity & assures the compatibility of the local solution at a corner and the
global solution of a problem.

The sensitivity equations at a general corner must be obtained next. If tgactions are
prescribed at a general corner, their sensitivities vanish. The sensitivities A, A; on either
side of the corner, are obtained by differentiating the appropriate gxpressions for A with
respect to the design variables. This leads to an unknown quantity i which is solved from
the differentiated form of eqn (13). In this way, the sensitivities on the boundary dB, of a
body with general corners, can be obtained.

3.1.2. Special corners : stress components are continuous at special corners. Looking at
the entire problem from a mathematical as well as a physical point of view, it is seen that
the following simple situations lead to continuity of stresses (and bounded A) at corners.
Other situations with continuous o are also possible.

A right angled corner with arbitrary applied tractions.

An acute angled unloaded corner (z) =1, =t = 1,7 = 0) where g,, = 0 (Williams,
1952).

A corner which arises from using symmetry or zoning in a problem where the point
was originally regular or a special corner,

Once the stresses are continuous around a corner, the following cquations hold from
eqn (2):

Apte +BuA = Aju +BRAL (L j.k=1,2). (14)

The above gives three equations, of which at least two are lincarly independent.
Therefore, the BEM eqns (1) plus eqns (14) give enough equations for solving the boundary
unknowns, including four from each corner,

This global system is overdetermined since extra equations arise from the stress
relations (14). The system, however, has full column rank, is consistent and the number of
linearly independent equations equals the number of unknowns. Regular QR decomposition
is used to solve this system. ‘

The corresponding sensitivity equations arc obtained by differentiating eqn (14) with
respect to the design variable . The expression is the following:

At + B LA +A.‘7k£[ + B8 = Ant +B LA +An;'k%k+ +BAL5. (15)

These corner sensitivity equations, together with eqn (3), can be used to solve for the
unprescribed boundary sensitivitics in a body with special corners.

3.2. Zones

Multiple zones have been treated in a BEM program by several authors (e.g. Liggett
and Liu, 1983). Here a consistent approach is presented for the treatment of zones and
corners in a DBEM program.

SAS 27:8-D
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A

B C

Fig. 3. Zones.

A 2-D situation is shown in Fig. 3 with three zones. A three-zone problem is considered
here for simplicity, with the total body having a smooth boundary. The material in each zone
is considered to be homogeneous, isotropic and linearly elastic. but the elastic properties can
vary from one zone to another. The idea of modeling the three-zone problem, which is easy
to extend to a body with an arbitrary number of zones, is outlined below. This algorithm
works fine if the stresses are bounded throughout the composite body. This is expected in
a body with uniform material properties, which is zoned for improving the efficiency and
accuracy of BEM modcling (Rudolphi, 1983). The general problem with different materials
often has stress singularities at points where the zones meet (Liggett and Liu, 1983).

The basic idea is to treat the body as three separate bodies. Each body (zone) has an
external boundary, an internal boundary and three corner points (stresses are continuous
at these points because they are generated, by the zoning process. from a body with a
smooth boundary). Let the boundaries of the three bodies be discretized. Interboundary
compatibility at the interface nodes must be satisfied. Conforming clements are used at
cuach corner.

Assume there are N, regular exterior points for cach body (i = 1, 2, 3 for this example)
and N,; regular interface points between zones (i.e. Ny, regular exterior points for zone |
and N, regular interface points between zones 1 and 2, ete.). A regular point is one such
that the boundary of zonc i, on which it lics, is locally smooth there.

There are four kinds of equations or relations to be considered.

3.2.1. The BEM equations. BEM equations are used in each zone and there are two
equations for each point (regular or corner point). For example, there are 2(N,, +
N3+ N,;) +6 BEM equations for body 1. The total number of equations is

3 3
2y Y N, +18. (16)

IERWEN

3.2.2. The external boundary conditions. Two quantities are specified at each regular
external point, These quantities can, in general, jump at a corner point. Thus, two quantities
are specified on each side of the corner points. The total number of external boundary
conditions is:

3 3
2% Y 5,N, +12 amn

tmljm)

where §,, is the Kronecker delta.
3.2.3. The interface conditions. At each interface point (say between A and A7), one
has the equations (i, j=1,2,3,i #/):

A(ln = _A(l/)‘ A(:n - —A‘:”,

W= 1, = -1,

The total number of interface equations is
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3 3
2Y Y (1-6,)N, +24. (18)

jym | jm}

3.2.4. The corner equations. Corner equations have been discussed in detail in Section
3.1 of this paper. There are nine corners in this example and three equations for each corner
[see eqns (14) and (15)]. A corner equation is applied between points in one zone, say
between 47 and A{ . Therefore, the total number of equations is 27.

Adding the terms in Sections 3.2.1-3.2.4 together, one obtains the total number of
equations as:

3 3
4% Y N,;+81.

imljml

Since there are four primary quantities for each regular point and eight primary quantities
for each corner point, the total number of unknowns is:

3 3
4 Y N,+72.

im ) jm

The system is overdetermined because of the stress continuity equations at corners.
However, the equations are consistent and sufficient and can be solved to get a unique
solution.

4. NUMERICAL IMPLEMENTATION

4.1. Discretization of equations—1 : stresses are continuous at corners of the body

The BEM equations (1) (for tractions and tangential displucement derivatives) and
(3) (for their sensitivitics) are discretized in the usual way. The boundary 08 is subdivided
into piccewise quadratic, conforming boundary clements. The variables t, and A, arc
assumed to be piccewise quadratic on these boundary elements. The logarithmically singular
kernels are integrated by using log-weighted Gaussian integration, When special corners
exist, the corner equations are added to the usual BEM equations, and all the equations
are assembled together. The resulting systems are of the form

(4]{z} +[B){A} = {0} (19)

[A1{3} +(B{A} = {h} (20)

and after switching appropriate columns one obtains, for the unknowns {x} and {%} on
the boundary

(Kl{x} = {r} 2n

(K1{c} = {ra}. (22)

Two points deserve mention here. First, eqns (21) and (22) have the same stiffness matrix
[K]. The vector {r,} contains the contributions from the second and third lines of eqn (3).
Second, eqns (21) and (22) are overdetermined but have full column rank. They have been
solved by QR decomposition in the numerical examples that follow (Golub and Van Loan,
1989).

4.2, Discretization of equations—11: stresses are discontinuous at corners of the body

The modified BEM equations (13) are discretized in the usua! way only on the boundary
28—08,. A pair of special segments 8, is placed near each corner where the stresses are
discontinuous. The analytical solutions for A,, discussed earlier, are assumed to be valid in
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the segments if they are small enough. The first integral in (13) yields coefficient matrices
for the nodal unknowns on the boundary 0B —¢Z8,. The second integral in (13) yields the
coefficient matrix for k and a known column from integrations of known functions such as
the first three terms of each of (12). The singular function In” r is integrated analytically.
The resulting systems are of the form

[41{z} +(BI{A} + {P}k+{/i} =0 (23)

and after switching appropriate columns one obtains, for the unknowns {x} including
A t,and k

(Kl{x} = {q:}. (24)

If there are some special corners on the boundary, the corner equations for them are added
to the above equations and the assembled system still has the same form. The system, then,
becomes overdetermined and is solved by QR decomposition.

The corresponding sensitivity equations are obtained in analogous fashion. This system
has the form

(K1{x} = {q:}. 25

4.3. Numerical results

All the numerical results discussed below are for plane strain with Poisson’s ratio
v = 0.3. The mechanical quantities t, A and ¢ and their sensitivitics are determined for each
problem. The first two examples include special corners. A general corner is studied in the
third problem. The last problem has two zones.

Example 1. A wedge of angle o subjected to tractions is shown in Fig. 4. These tractions
arc obtained from the stress function

¢(r,0) = Ar*sin20

with 4 = —1/2 sin 2a. In this special problem, the stress tensor o is continuous at the tip
of the wedge O (note that here the tractions are functions of a). The wedge angle « is the
design variable in this problem. The analytical solution of this problem is

0'”=O'22=0, d|2=|/sin2a

so that

A|=0. A2=0

Fig. 4. Example | : special corner problem.
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Table 1. Stress components and their sensitivities at the tip of the wedge (¢xample 1)

o,

% %2 12

Analytical Y 0.0000000 0.0000000 t.1547005

Numerical o; i ~0.2115977€-5 | O.167SS00E-6 | 1.1546976

. / / 0.0002%
Analytical &”;; | 0.0000000 0.0000000 | -1.3333333

Numerical cr'" 0.2448821E-4 | 0.1550109€-4 | -1.3333032

*
.. ’ / 00030
. . 0. & 00, 2cos2a
g =0 =0, 0 - = - — .
" h 12 Ja sin® 2«

This example provides an opportunity to test the present method for the determination of
the stress at the tip of a wedge and its sensitivity with respect to the wedge angle. In this
example (Appendix A),

on the curved surface and d% = 0 on the straight faces which undergo rigid body rotation.

The numerical results for the stress components and their sensitivities at O are given
in Table 1. It is quite remarkable that the numerical result for &, , captures five significant
digits of the analytical solution with only three quadratic boundary elements used to model
the boundary dB8!

Example 2. The classical problem of a body with an elliptical hole is considered in this
example. Only a quarter of the ellipse needs to be modeled because of symmetry (Fig. 5).
Here,a=2,b=1, L =30, 0, = 1.0. The corners here arise due to the use of symmetry
of the problem. Hence they are special corners where the stresses are continuous. The semi-
major axis ¢ is the design variable in this problem. The analytical solution for the tangential

I
D C

o m

Fig. 5. Example 2: a body with an elliptical hole.
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*“skin” stress and its sensitivity on the ellipse (for an elliptical hole in an infinite plate) are
(Barone and Yang, 1988):
l+2m—m*+2cos2¢
l+m?+2mcos2¢

. (!—m)(l+m2+2mc052¢)——(m+c052¢)(l+2m—m2+2c052¢)( 2b )
9= 0= (l+m +2mcos 2¢)° @+8):

0y =0y

I

where ¢ is the eccentric angle and m = (b—a)/(a+b).
The comparisons of analytical and numerical results for g, and &, are shown in Fig.
6a and b respectively. A total of 54 quadratic elements (20 elements are spaced at equal

L Bt A B S a2 SRS L

: a
se B 3
4 E-— 3
wE analytical resuit E
w b numerical result 3
] E 3
v 3 3
0 | :
18 - 3
10 ; 3
E 3
3 E b
oF E
s F :
18 : e J. A
o 2 a I ] e [} ] 14 14

¢ (rad.)

Fig. 6a. Angular variation of g, around the quarter ellipse.

19

analytical result 1
numerical result ;

d(rad.)

Fig. 6b. Angular variation of &, around the quarter ellipse.
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X24

tls-cosa-Zasina
1,=-Sin@+20c08 @

A= 2pcos@-2p0sing
A ,=2psin@+2p8cose

1-2v
2G

(p= )

Fig. 7. Example 3: general corner problem.

increments of the eccentric angle on the quarter ellipse, 12 elements applied on 4B, 14 on
DE, four on BC and four on CD, respectively) are used for these numerical results. The
density of elements on A8 and ED is nonuniform, with small elements being placed near
the points 4 and E, respectively. Problems involving stress concentrations are typically
sensitive to the mesh around the stress concentration points. The mesh used here is the
result of a limited convergence study and previous experience with such problems.

The results from the present method are seen to be very accurate over the entire region.
In these figures, the numerical solutions, except for some very small oscillations, essentially
agree with the analytical solutions within plotting accuracy. It is remarkable that the
computed sensitivity of the stress concentration factor at 4 is 2.03 and the relative error is
1.54% compared to the analytical result of 2.0.

Example 3. The effect of corners where the stresses are discontinuous is studicd by
considering the problem of a wedge of angle o subjected to the tractions shown in Fig. 7.
This solution is obtained from the stress function

o(r.0) = Br30

with B = |. In this problem, the stress tensor ¢ is discontinuous at the tip of the wedge O.
The design variable is still the angle a. The strategy discussed in Sections 3.1.1 and 4.2 is
ysed here with 08, = COD. A comparison of analytical and numerical results for A, and
A, on the boundary CB are shown in Fig. 8a and b, respectively. A total of six quadratic

B s R AAA ARAAS Sazaamass s s s oo
}
ok -4
¥ -4
. analytical result |
) o  numerical result
- b
«q |
o 180
B AN
FE IR
a3 P
1¢ P
_" dddidod
»n

Fig. 8a. Variation of G&. along CB.
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L e ma e L RS A RS AR AERAE L

— analytical result
r o  numerical result

Fig. 8b. Variation ofGaz along CB.

clements are used over 3B —¢8,. two for cach edge. All the numerical results lic close to
the curves. The results are accurate. For more general problems, the special segments 08B,
and the BEM elements near the transition points C and D must be chosen properly.

Example 4. The tinal problem considered in this paper is the determination of mechan-
ical quantitics and their sensitivitics in the region are shown in Fig. 9. Two zones, with
uniform material propertics, are included in this problem. The applicd boundary conditions
in this problem are the same as those in example | (Fig. 4) and the analytical solution for
this problem is the same as that from example 1. Numerical results for the stress components
and their sensitivities at O arc shown in Table 2. These are as accurate as those in Table |
for example 1.

5. CONCLUDING REMARKS

The power of the DDA of the relevant DBEM cquations, for the determination of the
DSCs of an elastic problem, has been demonstrated in this paper. This approach, which uses
tractions, tangential displacement derivatives, and their sensitivities as primary boundary
variables, is a natural for the accurate determination of stress sensitivities on the boundary
of a body. Boundary stress sensitivities, which are typically not easy to obtain accurately
by numerical methods, have been obtained very accurately here, at regular as well as at
corner points on the boundary of a body.

X24

Fig. 9. Example 4: zones.
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Table 2. Stress components and their sensitivities at the tip of the wedge (example 4)

(4 -]
°ll 12 12

Analytical "~ ij 0.0000000 0.0000000 1.1547005

Numerical ° i -0.2432946E-5 -0.1914389E-5 1.1546984

Error (%) / / 0.00025

Analyical ° | 0.0000000 0.0000000 -1.3333333

Numerical oi., 0.4803036E-5 0.6862585E-5 -1.333177

Error (%) / / 0.0012

The chosen numerical examples have analytical solutions available and serve as bench-
mark problems for testing the accuracy of the numerical algorithm. Of course, the computer
program that has been generated here can be applied to carry out general sensitivity analysis
of 2-D elastic problems.

Extensions of this work could be carried out to calculate DSCs of 3-D clastic problems
(following the DBEM formulation of Ghosh and Mukherjce, 1987) as well as nonlinear
problems with both matcrial as well as geometrical nonlincaritics. Some of the mathematical
formulations for nonlincar problems have alrcady been completed (Mukherjee and
Chandra, 1989, 1990) and numerical implementations are under way.
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APPENDIX A
Consider the parametric equations for a curve

xy = fi(b.n)
X3 = fi(b.n)
with ne|c, d] where ¢, de R'". Now, one has a smooth mapping I x R™ — R'®. Here be R'™, (x,, x;)e R'? and

n is not a function of b.
Now,

for a typical component of b.

Thus,

d |dx
ds ob|on
ds ™ ax

on

{Chen, 1989).
As an example, consider the curved part of the boundary of the wedge in Fig. 4. Let

x, = Rcos(nx), X, = Rsin(na)
where neft), tand b = a. Now

ox
an

d
ob

n

= Ra,

so that

&8s
i

R -

APPENDIX B
The coetlicients 4, 8. C and D of eqn (7) are the following (see Fig. 1):

A = [ (sin2y+2zc08 2y~ 21} —(2asin 2y ~cos 2y + {1} + (sin2y —2ficos 2y + 2a)1,”
+ (2B sin 2y +cos 2y ~ D, /4

B =[—(l=cos2y)x, —(l —cos2y)r, +sin 2y(r, —v.))]/2r
C = {~(sin 2x ~sin 28 + 2y cos 2a)r,” + (sin 22 —sin 2B+ 2ycos 20)t,;” + (cos 2x —cos 2B)(r,” — 2,7 )} 4
D = [{cos 2x—cos 28— 2ysin 2a)r,’ —(cos 2 —cos 2~ 2y sin 21, + (sin 2x ~sin 2/ () — 1, )|/4¢
where

7= p-a

t = ysin2y+cos2y—1.



